I. COURSE LOCATION
 X ON CAMPUS CCC

II. COURSE IDENTIFICATION
 PREFIX: CHEM NUMBER: 209 NAME: Organic Chemistry II

 3 LECTURE HOURS LIBA 04900 CURRICULUM & NO.
 4 LABORATORY HOURS 1.1/400504 PCS-CIPS NUMBER
 5 CREDIT HOURS N VARIABLE (Y/N)
 0 CLINICAL HOURS N REPEATABLE (Y/N)
 0 SOE HOURS 0 TIMES

III. DIVISION TO WHICH COURSE IS ASSIGNED
 X BACCALAUREATE/TRANSFER
 CAREER EDUCATION
 CONTINUING COMMUNITY EDUCATION
 ABE/ASE
 HEALTH OCCUPATIONS
 OTHER

IV. CATALOG DESCRIPTION OF COURSE
 Topics include aldehydes and ketones, carboxylic acids and derivatives, dicarbonyl compounds, carbohydrate, amines, amino acids and proteins, heterocyclic compounds, and nucleic acids. Laboratory required.

V. PREREQUISITES FOR THE COURSE
 CHEM 111 or CHEM 112

VI. METHODS OF INSTRUCTION
 DISCUSSION- LECTURE SEMINAR
 LABORATORY
 CORRESPONDENCE TELE-LECTURE (FILM-TV)
 TELEVISION (TELECOURSE) LABORATORY-DISCUSSION
 RADIO LECTURE
 INDEPENDENT STUDY X LECTURE-LABORATORY
 CO-OP OTHER (IDENTIFY):ONLINE
 X DISCUSSION

VII. OBJECTIVES OF THE COURSE (USE ADDITONAL PAGES AS NECESSARY)
 A. To introduce basic organic chemistry with understanding of the fundamentals of chemical bonding and structure.
 B. To introduce the classification of organic compounds with their nomenclature and functional groups.
C. To provide the knowledge of conformation, geometry, configuration or stereochemistry of organic compounds.
D. To introduce the basic reactions and synthesis of organic compounds.
E. To provide the knowledge of reaction mechanisms of different types of organic reactions and their synthetic applications.
F. To introduce spectroscopic techniques to characterize and analyze organic and biochemical molecules.
G. To provide students with laboratory experiences in regards of synthesis, purification, and analysis of organic compounds.

VIII. A. REQUIRED TEXTBOOK(S)
 TITLE: Microscale and Miniscale Organic Chemistry
 AUTHOR(S): Schoffstall, Gaddis, and Druelinger
 COPYRIGHT DATE: 2004 EDITION: 2nd
 ISBN# 0-07-242456-7
 TITLE: Organic Chemistry
 AUTHOR(S): Francis A. Carey
 COPYRIGHT DATE: 2006 EDITION: 6th
 McGraw Hill
 ISBN#: 0-07-282837-4

B. REQUIRED WORKBOOK(S)/LAB MANUALS
 TITLE: Macroscale and Microscale Organic Experiment
 AUTHOR(S): Williamson
 COPYRIGHT DATE: 1994 EDITION: Second
 PUBLISHING COMPANY: Houghton Mifflin

IX. SUPPLEMENTARY INSTRUCTIONAL MATERIALS IDENTIFY GENERAL SOURCES:

 IF EXTENSIVE COLLATERAL READINGS ARE REQUIRED FROM SPECIFIC BOOKS, PROVIDE INFORMATION.

X. METHODS OF EVALUATION OF STUDENTS ENROLLED IN THE COURSE
 Written exams, laboratory reports, homework, quizzes and others.

XI. COURSE OUTLINE
 LECTURE
 A. Structure and bonding of organic compounds. Hybridization and molecular shapes of alkanes, alkenes, alkynes, cycloalkanes. Alcohols and phenols.
 B. Stereochemistry of nucleophilic, electrophilic substitution, and elimination reactions.
 C. Conjugated dienes and aromatic substitution reactions.
 E. Carboxylic acids and their derivatives.
 1. The reactions of carboxylic acids including acyl substitution reactions.
 2. Mechanism of Acid-Catalyzed Esterification.
F. Amines and their general reactions including Hoffman Elimination.
 1. Azo-coupling
 2. Amino acids
 3. Peptides
 4. Proteins
 5. Stereochemistry of amino acids
 6. Acid-base behavior of amino acids
 7. Amino acid analysis including End Group Analysis
 8. Structures (primary, secondary, tertiary, and quaternary structure of protein.

G. Carbohydrates
 1. Basic units
 2. Structure
 3. D-L notation
 4. Classification
 5. Furanose and pyranose forms
 6. Mutarotation
 7. Glycosides and glycoproteins
 8. Disaccharides and polysaccharides

H. Lipids, fats, oils, and fatty acids
 1. Acetyl coenzyme A and TCA cycle
 2. Phospholipids
 3. Cholesterol (bad and good cholesterol)
 4. Steroids
 5. Basic knowledge of hormones

I. Hetero-cyclic aromatic compounds: Syntheses, structure, and reactions.

J. Pyrimidine and purine bases of nucleosides, nucleotides, and nucleic acids
 1. Structure and replication of DNA

K. Spectroscopic techniques (IR and NMR) to characterize organic compounds

L. Organometallic compounds

XII. LABORATORY

A. Esterification and hydrolysis. Esterification of cholesterol and characterization of cholesterol esters
B. The Fridel-Crafts reaction
 1. Anthraquinone and anthracene
 2. Acylation of ferrocene
 3. Acetylferrrocene
C. Synthesis and characterization of acetylsalicylic acid (Aspirin)
D. α-phenylcinnamic acid (Perking Reaction).
E. Malonic ester synthesis: Barbiturate
F. Carbohydrates and sweeteners
G. Enzymatic reactions
H. Polymers: synthesis and recycling
I. Characterization of organic compounds by spectroscopic methods (Mass, IR and NMR and UV-VIS).
J. Spectrophotometric analysis of organic and biological samples.
XIII. THE LEARNING OUTCOME

1. The students should be able to identify covalent bonding, structures, hybrid orbitals, bond angles, geometry, and polarity of carbon compounds.
2. The students should be able to draw hybrid orbital diagrams of the carboxylic acids and their derivatives including the resonance structures of carboxylic acids.
3. They should be able to explain why the carboxylic acids are acids. They should be able to learn memorize the rules of IUPAC names of the carboxylic acids and their derivatives.
4. The students should be able to know what pK\textsubscript{a} is. How pK\textsubscript{a} is related to the acidity of the carboxylic acids.
5. They should be able to write down the mechanism of Malonic Ester Synthesis, Acetoacetic Acid Synthesis and Aldol Condensation, Claisen and Perkin Condensations and the synthesis of organic compounds based on those reactions.
6. The students should be able to understand the applications of Diazonium compounds in organic synthesis.
7. The students should be able to identify different classes of amines and their derivatives including peptide bond formations.
8. They should be able to classify the amino acids based on their side chains.
9. They should be able to calculate the pK\textsubscript{a} values for zwitterions.
10. They should be able to understand the formation of polymers of amino acids, the structures of proteins including enzymes with some mechanisms.
11. The students should be able to understand how nucleic acids are formed including their classifications, naming and structures, differences, replications, and protein synthesis by nucleic acid.
12. They should be able to understand the formation and structures of lipids and fats.
13. They should be able to identify the asymmetric or chiral centers, to identify D, and L and d and l configurations and R, and S configurations.
14. They should be able to draw the cyclic structures of carbohydrates and also, understand the metabolism of glucose including TCA cycle.
15. The students should be able to synthesize organic compounds in the laboratory, separate (using chromatographic techniques), purify (including crystallization) and characterize organic compounds.